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Building on the work �C. R. Doering, P. S. Hagan, and P. Rosenau, Phys. Rev. A 36, 985 �1987�� we present
a regularized Fokker-Planck equation for discrete-state systems with more accurate short-time behavior than its
standard, Kramers-Moyal counterpart. This regularization leads to a quasicontinuum Fokker-Planck equation
with several key features: it preserves crucial aspects of state-space discreteness ordinarily lost in the standard
Kramers-Moyal expansion; it is well posed, and it is more amenable to analytical and numerical tools currently
available for continuum systems. In order to expose the basic idea underlying the regularization, it suffices for
us to focus on two simple problems—the chemical reaction kinetics of a one-component system and a two-
dimensional symmetric random walk on a square lattice. We then describe the path to applying this approach
to more complex, discrete-state stochastic systems.
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I. INTRODUCTION

Stochastic, discrete-state models abound in the descrip-
tion of a variety of both naturally occurring and engineered
systems. In cell biology, for example, biochemical processes
often involve only a small number of relevant molecules
and/or occur at spatially distinct locations. As a result, these
processes demand a discrete description—discrete in physi-
cal and/or state space �1�. Examples include cell signaling
�2� random walks and bubble dynamics on DNA �3�, gene
expression �4�, molecular motors �5�, and ratchets �6� with
distinct potential wells, and diffusion of cancer cells �7�.

When modeling such systems over long time intervals
and/or over large spatial/state-space scales, one can often
safely ignore the effects of discreteness. �See �8� for excep-
tions�. Such an approximation gives rise to the standard
Fokker-Planck equation via the Kramers-Moyal expansion
truncated at second order. See �9� for a complete description.

However, if one would like to investigate short-time or
short-distance behavior, the second-order truncation is insuf-
ficient. In this paper, we address this issue by extending the
work of Rosenau �10� and more specifically that described in
Doering et al. �11�. In particular, we bridge the gap between
a general discrete state-space system and its Fokker-Planck
limit via a regularization process. This regularized, or so-
called quasicontinuum Fokker-Planck equation, accurately
treats coarse-grained descriptions over large regions of phase
space yet still retains some key features of original discrete
system. The price for this improvement, furthermore, is not
significant—the usual local drift and diffusion operators are
replaced with bounded, nonlocal counterparts, with little in-
crease in computational complexity and effort of analysis.

We begin with the master equation which tracks the prob-
ability that the system is in a specific, discrete state s

P�s,t + dt� = P�s,t� + �
s��s

T�s� → s�P�s�,t�dt

− �
s�s�

T�s → s��P�s,t�dt . �1�

for all allowed s. Here T�s�→s� is the rate at which the
system transitions from the state s to the state s�. The quan-
tity P�s , t� may represent the probability of having a speci-
fied number s of particles of a given type at time t, or the
probability that a particle is at a specified site s on a discrete
lattice, or the probability that a queue has length s, etc.

The solution of this coupled set of equations Eq. �1� con-
tains information about all single-time statistics of the pro-
cess under investigation. Unfortunately, these solutions are
rarely available in closed form and can be quite costly to
obtain numerically. See the following references for work in
the domain of biochemically reacting systems �12–17�. A
promising alternative to straightforward discretization of the
master equation has been developed by Munsky and Kham-
mash �18–21�.

As a middle-ground approach between faithfulness to dis-
crete dynamics offered by the master equation and the com-
putational benefits offered by the Fokker-Planck, we con-
struct a quasicontinuum approximation a la �11� to the
discrete-state master equation. The quasicontinuum approach
is appealing since it retains the structure/language of a con-
tinuum description. As such, it is amenable to the arsenal of
computational methods for time-dependent PDE’s including
Galerkin �22�, Adaptive Mesh, and variational approaches.
The quasicontinuum Fokker-Planck equation also inherits a
trace of the original discrete process and moreover can be
constructed to capture the time-dependent, higher-order �be-
yond second order� fluctuations.

In order to illustrate the motivation for and the mechanics
of the regularization, it is sufficient for us to focus on two
relatively simple problems—�1� the reaction kinetics of a
one-component chemical system and �2� a two-dimensional,
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symmetric random walk on a square lattice. This extends
regularization the procedure beyond the original work �11� to
systems with nonuniform drift �potential� and to higher-
dimensional state spaces. In Sec. II we describe the master
equation, the Kramers-Moyal expansion, and its associated
regularization. In Sec. III we apply the method to the afore-
mentioned reaction kinetics example. We then apply the
regularization method to a random walk in two spatial di-
mensions in Sec. IV. Our results are summarized in Sec. V
where we also conclude with a discussion of future direc-
tions and both the potential and limitations of the approach.

II. KRAMERS-MOYAL EXPANSION AND
REGULARIZATION

The regularization method we use in this paper is de-
scribed in a number of works �see for example �11,23–26��
but the sake of completeness, we outline it again here.

Consider a the time evolution of a symmetric random
walker on a one-dimensional lattice. Let n index the lattice
site n= . . .−2 ,−1 ,0 ,1 ,2. . ., h be the constant distance be-
tween sites, and � be the jump rate; i.e., the probability of
jumping from one site to a neighboring site per unit time.
The master equation �1� for this process takes the particularly
simple form

P�n,t + dt� = P�n,t� + �P�n + 1,t� − 2�P�n,t� + �P�n − 1,t� .

�2�

The standard path from the master equation to a coarse-
grained description is via the Kramers-Moyal expansion
�9,27�. The discrete index n is replaced by the density vari-
able x=n /�, where � is the system volume. We then expand
the distribution function

�tP�x,t� = �
k=1

�

�− �x�kD�k��x�P�x,t� , �3�

where the coefficients D�k� are given by moments of the tran-
sition rates,

D�k��x� = lim
�→0

1

�

1

k!
� dx��x� − x�kP�x�,t + ��x,t� . �4�

For our one-dimensional random walk example we obtain

D�odd� = 0; D�2� = h2; D�4� =
h4

12
; D�6� =

2h6

6!
, �5�

and the Kramer-Moyal expansion gives

Pt�x,t� = ��Pxx�x,t� +
h2

12
P4x�x,t� +

2h4

6!
P6x�x,t� + . . .	

�6�

supplemented with initial conditions

P�x,0� = P0�x� . �7�

The usual truncation of the Kramers-Moyal expansion at sec-
ond order, i.e., the standard Fokker Planck equation, exactly
captures the time dependence of the second moments of the

distribution for all times, but higher-order moments are only
approximated. For late times, the quality of this approxima-
tion improves, but for short times there can be considerable
disagreement.

This disagreement stems from the fact that at the level of
Fokker-Planck equation all traces of discreteness are washed
away. We shall therefore go beyond that level in order to
retain some of the effects of a discrete-state space �11�. How-
ever, to this end one cannot simply use the expansion
above—Eq. �6� has to be regularized.

The conundrum of this expansion is noted by observing
that to include the effects due to discreteness, one has to go
beyond the second order. But the expected correction due to
fourth order rather than improving the situation, yields an
ill-posed problem. At sixth order the ill posedness is re-
moved, but the positivity of P is then lost. If non-negativity
of the distribution function P�0 is required for all times t
�0, then this series simply cannot be truncated at arbitrary
order. By Pawula’s theorem �28�, non-negativity demands
that one keep either only the first and second terms or the
full, infinite set of them. This is best seen in Fourier space.
With the usual identification of �x→ ik we have

P̂t�x,t� = − �
k2 −
h2

12
k4 +

2h4

6!
k6 + ¯�P̂ , �8�

where P̂ is the Fourier transform of P.
To resolve the difficulty we note that Eq. �8� is a truncated

expansion of the following:

P̂t�x,t� = − �
4 sin2�kh/2�

h2 P̂ . �9�

But this expansion is precisely the source of the difficulty.
While the exact discrete operator as given in Eq. �9� is
bounded from below and above, its truncated, polynomial
expansion is unbounded, leading to the apparent difficulties.
This is resolved if instead we use a Pade representation
which honors the boundedness. We thus approximate

4 sin2�kh/2�
h2 �

k2

1 +
h2k2

12

, �10�

which is bounded from above and below and approximates
the original expression up to fourth order. Of course, the
Pade used is not unique; many others could be devised ap-
proximating the original expression to a desired degree of
accuracy. Its utility is twofold—first it is simple; second,
though per se this operator is nonlocal, see below, being a
ratio of two polynomials its action can be made local by
simply multiplying Eq. �3� by the denominator. This at once
leads to

Pt = �Pxx +
h2

12
Pxxt �11�

�where subscripts indicate partial differentiation� which is
not only well posed, but also restores a number of features
lost in the standard Fokker-Planck description.
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The last term on the right-hand side introduces explicitly
the effect of discreteness. The basic properties of this equa-
tion were presented in �10�. Its fundamental effect is to slow
the initial spread. Thus the Green’s function response to a
Dirac delta function source is not smoothed immediately.
Instead, there is a delay which causes the initial delta to
persist for a while. The instant smoothing is often mentioned
in the literature as the main shortcoming of the Fokker
Planck process. The presented regularization resolves this
difficulty at once.

Often the localization of the nonlocal Pade in Eq. �10� is
inconvenient �when more than just few terms are present in
the equation� or in the higher dimensional case, utterly im-
possible. In such cases one has to address the Pade approx-
imant as is. In our case since the denominator in nothing but
a transform of Cauchy operator this is a trivial task leading to

�tP
Reg�x,t� = − �xQ�x,t�;

Q�x,t� = − �
−�

�

exp
−  �

12
�Px

Reg�x − �,t�d� . �12�

The net effect of regularization as seen here is to replace the
constant diffusion coefficient with an effective, nonlocal one
which bounds the probability flux resulting from potentially
large gradients in the distribution. In this case �where D�2�

and D�4� are constant�, we can rewrite Eq. �12� as

�tP
Reg�x,t� = �xD� � �xP

Reg�x,t� , �13�

and f �g denotes the convolution of f with g. The probability
flux Q�x , t� takes the form

Q�x,t� = − D� � �xP�x,t� . �14�

The interpretation is clear in k space where

D��k� =
1

1 + h2k2/12
�15�

and

�tP̂
Reg�k,t� = − k2D̂��k�P̂Reg�k,t� . �16�

The merit of this representation will be evident in the next
section when we turn to higher dimensions.

III. BIOCHEMICAL REACTION

We now consider one of the simplest examples of reaction
kinetics �29�. Reactant A is created �from the vacuum� at a
rate k and decays at a rate qA; i.e., proportional to the num-
ber of A molecules present: This could, for example, be
model of mRNA production and decay, or it could represent
particle number fluctuations in a well-mixed vessel which is
coupled to a particle bath through a membrane.

�→kA A→qa� �17�

Using the standard Kramers-Moyal expansion procedure �9�,
we obtain the following terms:

D�1� = k − qx; D�2� =
k + qx

2
; D�3� =

k − qx

6
;

D�4� =
k + qx

24
. �18�

More generally, if n is even, then

D�n� =
k + qx

n!
�19�

and, if n is odd, then

D�n� =
k − qx

n!
. �20�

This gives rise to the following evolution equation:

�tP�x,t� = − �x��k − qx�P�x,t�� + �xx� k + qx

2
P�x,t�	

− �xxx� k − qx

6
P�x,t�	 + �xxxx� k + qx

24
P�x,t�	 + . . .

�21�

The standard Fokker-Planck equation results from retaining
only first two terms is on the right-hand side.

As with the previously described random walker, we use
the regularization procedure to circumvent a truncation of
the moment expansion. We sum all of the odd terms in the
expansion to obtain sinh��x�P. In Fourier space this becomes
sin�k�P and is replaced with the bounded expression
k / �1+k2 /6�. The new, bounded operator exactly reproduces
moments up to a specified order �in this case fourth�. For the
even terms, a similar procedure is applied, yielding
k / �1+k2 /12�. This leads to the complete, regularized
Fokker-Planck equation,

�tP
RFP = �x� 1

1 − 6�x
2 �A−�x�PRFP�	

+
1

2
�xx� 1

1 − 12�x
2 �A+�x�PRFP�	 , �22�

where A�=qx�k.
In real space/number space we have

�tP
RFP�x,t� = �x�

−�

�

exp
−  x − �

6
�A−���PRFP��,t�d�

+ �xx�
−�

�

exp
−  x − �

12
�A+���PRFP��,t�d�

�23�

with a no-flux boundary condition at the origin.
To demonstrate the quantitative improvement, we com-

pare the short-time solutions of the Fokker-Planck �Eq. �21�
with the first two terms on the right-hand side�� and the
Regularized Fokker-Planck equation �23� with the behavior
of the fully discrete process. We compare the evolution of the
discrete process to solutions of the FP and RFP with initial
conditions P�x ,0�= PRFP�x ,0�=��x−5�, namely, a system
initially with n=5 molecules of type A. We then investigate
the time evolution of various low-order moments of this dis-
tribution, m1= �x� and mj = ��x−m1� j�.
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By construction, the first and second moments are identi-
cal for the discrete process, the FP equation and the RFP
equation. However, beyond the second moment, the FP and
discrete process begin to disagree. The RFP, which uses in-
formation about the fourth moment, is identical to the dis-
crete process. Moreover, there is good agreement for the
sixth moment as well �see Fig. 1�.

IV. TWO-DIMENSIONAL RANDOM WALK

Next we consider the symmetric random walk on a the
two-dimensional square lattice. We assume the jump rate to
nearest-neighbor sites in both x and y directions is 	. The
Kramers-Moyal expansion for this process gives

D�1� = D�3� = 0 D�2� =
	

2
D�4� =

	

24
. �24�

Keeping terms up to second order leads to the following
Fokker-Planck/Diffusion equation:

�tP
FP = 	��xx + �yy�PFP. �25�

Applying the same set of techniques as in the previous sec-
tion, we obtain the associated regularized FP equation

�tP
RFP =

1

2
�xx� 1

1 − 12�x
2 PRFP	 +

1

2
�yy� 1

1 − 12�y
2 PRFP	 ,

�26�

where each of the terms in brackets can be understood in the
operator sense via the Fourier transform as in one dimension.

Consider the lattice random walk with the single walker
initially �t=0� located the origin x=0, y=0. The analogous
initial condition for both FP and RFP have the Dirac function
PFP�x ,y ,0�= PRFP�x ,y ,0�=��x���y�. We compare the mo-
ments for short times for all three processes. A short-time
expansion for the moments �x
y���t� can be worked out ex-
actly combinatorially for the discrete process, and the mo-

ments �x
y���t� for the FP and RFP can be worked out ana-
lytically.

The results are given in Table I. As can be seen, the mo-
ments of the RFP and the original, discrete process are iden-
tical up to fourth order. A comparison of the sixth order
moment is given in Fig. 2. Despite the fact that the agree-
ment for the sixth order moment was not demanded in the
regularization, the fit is nevertheless quite impressive. A
more complicated Pade approximation could have been con-
structed to match moments higher than fourth, but the com-
plexity of the resulting equation would likely not have been
worth the gains in accuracy.

V. CONCLUDING NOTES

The essential message presented in this paper is the fol-
lowing: the conventional Fokker-Planck equation is insuffi-
cient to describe the short-time behavior of general, discrete-
state systems. By using a regularization scheme originally
proposed in �11�, one can correct this shortcoming applied to
more general systems than the simple one-dimensional ran-
dom walker presented there. Moreover, this regularization
results in the same level of complexity as the ordinary
Fokker-Planck equation in that the resulting operator is con-
tinuous in both space and time.

Our approach introduces a new equation which improves
the FP description at short times and blends into FP in the
long time limit, providing an all-inclusive description over
all time scales. This is a new and improved fundamental
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FIG. 1. �Color� Evolution of the sixth moment as a function of
time for the exact process �red�, the regularized FPE �dashed line�
and the FPE �solid line�.

TABLE I. Moments of the RFP and the original, discrete
process.

Process �x2� �x4� �x6�
Discrete t

2
3
4 t2+ t

2 See figure

FP t
2

3
4 t2 15

8 t3

Regularized FP t
2

3
4 t2+ t

2
15
8 t3+ 15

4 t2+ 5
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FIG. 2. �Color� Time dependence of the sixth moment for the
two-dimensional process. Discrete process �red�, regularized FPE
�dashed line� and FPE �solid line�.
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description and not merely a numerical algorithm. Hence our
approach has an advantage both over numerical algorithms,
which may work well for short-time simulations, but may
have difficulty capturing the long time behavior, and over the
FP which is inadequate until later times.

We have derived and solved regularized FP equations for
two representative cases—the short-time behavior of a single
component reaction kinetics and a two-dimensional, lattice
random walk. In particular, we have demonstrated that the
solutions of these regularized equations better track the sta-
tistics of high order moments than the solutions to the stan-
dard FP equation. As a by-product we note that the regular-
ization, while perhaps appearing formidable in its real space,
convolutional form, actually helps ameliorate stiffness issues
by virtue of its gradient smoothing effect.

We have purposely dealt with two very simple in ex-
amples in order to illustrate our specific approach for regu-
larization. Extensions to a class of more complex systems
where reactions occur only in one variable at a time are
straightforward. A key question toward more general appli-
cability is: can one develop regularized FPEs for systems in
which transitions change several variables at once �e.g., re-
actions where A→A+1 and B→B−1 simultaneously and or
A→A−1 and B→B+1 simultaneously�. By a coordinate ro-
tation we believe this case can be handled as well. For sys-
tems which evolve by changes both along coordinate axes
and along diagonals, the straightforward application of the

ideas presented here will no longer be possible, thought im-
provements to short-time behavior may still result from a
“partial” regularization.

Several other questions arise: what continuous state
Langevin processes also gives rise to these same regularized
FP equations? What is the most general class of reaction/
transition rates to which one can apply the regularization
procedure?

Areas of future application include queueing systems
moving beyond the diffusion/heavy traffic limit �30�,
filtering/optimal estimation where the regularized FP would
replace the Kushner-Stratnovich equation �31,32� and
Kushner-Stratonovich-Pardoux’ �33� equations. This ap-
proach can be used for state/parameter estimation from short-
time data. We also believe that the quasicontinuum approach
can bridge discrete and continuum domains in coupled
particle-continuum hybrid solvers for the simulation of mul-
tiscale systems.
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